
Week 8 - Wednesday



 What did we talk about last time?
 Internet
 P2P architectures
 Transport layer:
 UDP details









 Reliable transport is often desirable, so Transmission Control 
Protocol (TCP) is usually used for that purpose

 Unlike UDP, TCP creates a session with multiple messages 
sent back and forth between the two hosts

 Messages are numbered
 TCP also uses flow control, allowing hosts to avoid sending 

more data at once than their receivers can handle



 Because they have to do more, TCP 
segments contain more information:
 Source port
 Destination port
 Sequence number (SEQ)
 Acknowledgement number (ACK)
 Flags
 Receive window
 Checksum
 Urgent data pointer
 Optional fields
 Payload (actual data)

 Like UDP, most of these fields are 16 
bits
 SEQ and ACK are 32 bits
 Optional fields vary
 Payload is however long it needs to be



 So that segments aren't lost, hosts send a 
sequence number (SEQ) with each segment

 The initial value is a random number k
 After sending n bytes, the next SEQ will be n + k
 So that the A knows how much B has gotten, 

B's next response to A contains an 
acknowledgement number (ACK) which is the 
last SEQ from A plus the size of that message

 In this way, both sides know how much the 
other side is sending, what's lost, and what's 
received

 If nothing is lost and messages are going back 
and forth, each SEQ will be the last ACK 
received



 Buffers are always finite
 A TCP connection has a buffer that's reading information as it 

arrives from the other host
 Data is removed from this buffer as the process reads it from the 

socket
 If too much data is arriving, the buffer fills up, and data will be lost
 Each time a process sends a TCP segment, it also sends a receive 

window value, giving the number of bytes available in the buffer 
for that connection

 If there's not enough space for the next message, the sender will 
break its message into parts so that the part it sends will fit into 
the receive window



 The following is a TCP segment for an HTTP GET request

Header

1388
0050
0000 0017
0000 002a
5010
1000
cf33
0000

source port = 5000 (0x1388)
destination port = 80 (0x0050)
sequence number = 23 (0x17)
acknowledgement number = 42 (0x2a)
flags
receive window = 4096 (0x1000)
checksum
urgent data ptr

Payload

4745 5420 2f20 4854 5450 2f31
2e31 0d0a 486f 7374 3a20 6578
616d 706c 652e 636f 6d0d 0a43
6f6e 6e65 6374 696f 6e3a 2063
6c6f 7365 0d0a 0d0a

GET / HTTP/1
.1\r\nHost: ex
ample.com\r\nC
onnection: c
lose\r\n\r\n



 The TCP header has a 16-bit flags field that can signal different information about a 
segment

 The book mentions six of these:
 URG: Urgent pointer field is significant
 ACK: Acknowledgment field is significant
 PSH: Push buffered data to the receiving applications
 RST: Reset the connection
 SYN: Synchronize sequence numbers (set only in the first segment)
 FIN: Last segment from sender

Index 0-3 4-9 10-15

Meaning
Length of header in 

32-bit words
Not explained here

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Value 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Hex 5 0 0 0



 When a TCP connection is being established by a 
client calling connect(), three segments are sent:
 SYN (from the client)
 SYN-ACK (from the server)
 ACK (from the client)

 These segments are called the three-way handshake
 They are normal segments except that they have no 

data
 The SYN bit is set on the SYN and SYN-ACK 

segments, and the ACK bit is set on the ACK 
segment

 ACK is set on any segment intended to show that an 
earlier segment is being acknowledged



SYN Request 
(client to server)

1388
0050
0000 136d
0000 0000
5002
1000
2e67
0000

source port = 5000 (0x1388)
destination port = 80 (0x0050)
sequence number = 4973 (0x136d)
acknowledgement number = 0
flags = SYN
receive window = 4096 (0x1000)
checksum
urgent data ptr

SYN-ACK
Response

(server to client)

0050
1388
0000 0273
0000 136e
5012
1000
2be3
0000

source port = 80 (0x0050)
destination port = 5000 (0x1388)
sequence number = 627 (0x273)
acknowledgement number = 4973 (0x136d)
flags = SYN and ACK
receive window = 4096 (0x1000)
checksum
urgent data ptr

ACK Response 
(client to server)

1388
0050
0000 136e
0000 0274
5010
1000
2bf6
0000

source port = 5000 (0x1388)
destination port = 80 (0x0050)
sequence number = 4974 (0x136d)
acknowledgement number = 628 (0x274)
flags = ACK
receive window = 4096 (0x1000)
checksum
urgent data ptr



 Using SEQ and ACK numbers with the checksum 
allows for error detection

 It's hard to be sure what went wrong, but some 
conclusions can be drawn:
 Incorrect ACK: If the ACK is too small, the sender of the 

ACK missed one or more messages
 Incorrect SEQ: If the SEQ is larger than expected, the 

receiver of the SEQ missed one or more messages
 Incorrect checksum: The segment is corrupted or part 

is missing
 In all three cases, sending the last segment based 

on acknowledged data is a request for the other 
side to resend



 To make robust guarantees about message delivery, TCP also 
keeps track of the time it takes for segments to make a trip

 If a segment is missing for long enough, TCP can request it 
again

 How long should it wait?
 Because the Internet is a large and heterogeneous place, it 

wouldn't make sense to wait for any particular fixed time
 Instead, the retransmission timeout (RTO) is computed based 

on previous transmission times and how much they fluctuate



 Round-trip time (RTT) is the amount of time it takes to for a segment to be sent 
to another host and then receive a reply
 RTT can change for each segment

 To estimate how long the next RTT is likely to be, TCP uses a smoothed round-
trip time (SRTT), which is a weighted average of the old SRTT and the latest 
RTT
 The new RTT is often weighted with 1

8
, but other values are possible

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′ = 7
8
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 1

8
𝑆𝑆𝑆𝑆𝑆𝑆

 Larger values would weight the most recent exchange heavier against history
 Using another weighted average, TCP keeps track of the variance of the RTT
 A final formula uses the expected RTT (the SRTT) and this variance to compute 

the current RTO





 Network security is built on 
principles from general 
computer security:
 Confidentiality
 Integrity
 Availability

Confidentiality

IntegrityAvailability



 You don't want other people to be able to read your stuff
 Some of your stuff, anyway

 Cryptography, the art of encoding information so that it is 
only readable by those knowing a secret (key or password), is 
a principle tool used here

 Confidentiality is also called secrecy or privacy



 You don't want people to change your stuff
 You want to know:
 That your important data cannot be easily changed
 That outside data you consider trustworthy cannot be easily changed 

either
 There are many different ways that data can be messed up, 

and every application has different priorities



 You want to be able to use your stuff
 Many attacks are based on denial of service, simply stopping 

a system from functioning correctly
 A SYN flood where attackers try constantly to create TCP 

connections from spoofed IP addresses is a classic DoS attack
 Availability can mean any of the following:
 The service is present in usable form
 There is enough capacity for authorized users
 The service is making reasonable progress
 The service completes in an acceptable period of time







 Finish network security
 Internet layer
 Link layer
 Wireless



 Finish Project 2
 Due Friday by midnight!

 Read sections 5.6, 5.7, and 5.8


	COMP 3400
	Last time
	Questions?
	Project 2
	Transport Layer
	TCP
	TCP segments
	Numbering
	Flow control
	Example TCP segment
	Flags
	TCP handshake
	TCP handshake example
	Packet loss
	Timeouts
	RTT and SRTT
	Network Security
	CIA
	Confidentiality
	Integrity
	Availability
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

